Sparse matrix inversion with scaled Lasso

نویسندگان

  • Tingni Sun
  • Cun-Hui Zhang
چکیده

We propose a new method of learning a sparse nonnegative-definite target matrix. Our primary example of the target matrix is the inverse of a population covariance or correlation matrix. The algorithm first estimates each column of the target matrix by the scaled Lasso and then adjusts the matrix estimator to be symmetric. The penalty level of the scaled Lasso for each column is completely determined by data via convex minimization, without using cross-validation. We prove that this scaled Lasso method guarantees the fastest proven rate of convergence in the spectrum norm under conditions of weaker form than those in the existing analyses of other l1 regularized algorithms, and has faster guaranteed rate of convergence when the ratio of the l1 and spectrum norms of the target inverse matrix diverges to infinity. A simulation study demonstrates the computational feasibility and superb performance of the proposed method. Our analysis also provides new performance bounds for the Lasso and scaled Lasso to guarantee higher concentration of the error at a smaller threshold level than previous analyses, and to allow the use of the union bound in column-by-column applications of the scaled Lasso without an adjustment of the penalty level. In addition, the least squares estimation after the scaled Lasso selection is considered and proven to guarantee performance bounds similar to that of the scaled Lasso.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

The Lasso under Poisson-like Heteroscedasticity

The performance of the Lasso is well understood under the assumptions of the standard sparse linear model with homoscedastic noise. However, in several applications, the standard model does not describe the important features of the data. This paper examines how the Lasso performs on a non-standard model that is motivated by medical imaging applications. In these applications, the variance of t...

متن کامل

Adapting to unknown noise level in sparse deconvolution

In this paper, we study sparse spike deconvolution over the space of complex-valued mea-sures when the input measure is a finite sum of Dirac masses. We introduce a modified versionof the Beurling Lasso (BLasso), a semi-definite program that we refer to as the ConcomitantBeurling Lasso (CBLasso). This new procedure estimates the target measure and the un-known noise level si...

متن کامل

Efficient Smoothed Concomitant Lasso Estimation for High Dimensional Regression

In high dimensional settings, sparse structures are crucial for efficiency, both in term of memory, computation and performance. It is customary to consider `1 penalty to enforce sparsity in such scenarios. Sparsity enforcing methods, the Lasso being a canonical example, are popular candidates to address high dimension. For efficiency, they rely on tuning a parameter trading data fitting versus...

متن کامل

The Benefit of Group Sparsity

This paper develops a theory for group Lasso using a concept called strong group sparsity. Our result shows that group Lasso is superior to standard Lasso for strongly group-sparse signals. This provides a convincing theoretical justification for using group sparse regularization when the underlying group structure is consistent with the data. Moreover, the theory predicts some limitations of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013